

JJaavvaa
MMeetthhooddss

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Second AP* Edition
— with GridWorld

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2011 by Maria Litvin, Gary Litvin, and
Skylight Publishing

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the authors and Skylight Publishing.

Library of Congress Control Number: 2010915303

ISBN 978-0-9824775-7-1

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

SCRABBLE® is the registered trademark of HASBRO in the United States and Canada and
of J.W. Spear and Sons, PLC, a subsidiary of Mattel, Inc., outside the United States and
Canada.

 1 2 3 4 5 6 7 8 9 10 16 15 14 13 12 11

Printed in the United States of America

 11

2 An Introduction to Software
Engineering

2.1 Prologue 12
2.2 Compilers and Interpreters 14
2.3 Software Components and Packages 20
2.4 Lab: Three Ways to Say Hello 21
2.5 Object-Oriented Programming 27
2.6 Lab: More Ways to Say Hello 30
2.7 Summary 37
 Exercises 38

Chapter 2

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

12 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

2.1 Prologue

One of the first computers, ENIAC, eniac developed in 1942-1946 primarily for
military applications, was programmed by people actually connecting hundreds of
wires to sockets (Figure 2-1) — hardly a “software development” activity as we
know it. (ENIAC occupied a huge room, had 18,000 vacuum tubes, and could
perform 300 multiplications per second.) In 1946, John von Neumann developed the
idea that a computer program can be stored in the computer memory itself in the form
of encoded CPU instructions, together with the data on which the program operates.
Then the modern computer was born: a “universal, digital, program-stored” computer
that can perform calculations and process information.

Figure 2-1. Two technicians wiring the right side of ENIAC

(Courtesy of U. S. Army Research Laboratory)

Once program-stored computers were developed, it made sense to talk about
programs as “written.” In fact, at the beginning of the computer era, programmers
wrote programs in pencil on special forms; then technicians punched the programs
into punch cards punchcard or perforated tape. A programmer entering a computer
room with a deck of punch cards was a common sight. Fairly large programs were
written entirely in machine code using octal or hexadecimal instruction codes and
memory addresses. It is no coincidence that the same word, “coding,” is used for
writing programs and encrypting texts. Programmers were often simply

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.1 ~ PROLOGUE 13

mathematicians, electrical engineers, or scientists who learned the skill on their own
when they needed to use a computer for their work.

In those days computers and “computer time” (that is, the time available for running
programs) were very expensive, much more expensive than a programmer’s time,
and the high computer costs defined the rules of the game. For instance, only fairly
important computer applications could be considered, such as military and scientific
computations, large information systems, and so on. Programmers strove to make
their programs run faster by developing efficient algorithms (the concept of an
algorithm is described in Chapter 4). Often one or two programmers wrote the entire
program and knew all about it, while no one else could understand it. Computer
users were happy just to have access to a computer and were willing to learn cryptic
instructions and formats for using programs.

Now, when computers are so inexpensive that they have become a household
appliance, while programmers are relatively scarce and expensive, the rules of the
game have changed completely. This change affects which programs are written,
how they are created, and even the name by which programmers prefer to be called
— “software engineers.” There is still a need, of course, for understanding and
optimizing algorithms. But the emphasis has shifted to programmers’ productivity,
professionalism, and teamwork — which requires using standard programming
languages, tools, and software components.

Software applications that run on a desktop computer are loaded with features and
must be very interactive and “user-friendly,” (that is, have an intuitive and fairly
conventional user interface). They must also be portable (that is, able to run on
different computer systems) and internationalized (that is, easily adaptable for
different languages and local conventions). Since a large team may work on the
same software project, it is very important that teams follow standard development
methodologies, and that the resulting programs be understandable to others and well
documented. Thus software engineering has become as professionalized as other
engineering disciplines: there is a lot of emphasis on knowing and using professional
tools in a team environment, and virtually no room for solo wizardry.

A typical fairly large software project may include the following tasks:

 y Interaction with customers, understanding customer needs, refining and
formalizing specifications

 y General design (defining a software product’s parts, their functions and
interactions)

 y Detailed design (defining objects, functions, algorithms, file layouts, etc.)
 y Design/prototyping of the user interface (designing screen layouts, menus,

dialog boxes, online help, reports, messages, etc.)

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

14 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

 y Coding and debugging

 y Performance analysis and code optimization

 y Documentation

 y Testing

 y Packaging and delivery

 y User technical support

And, in the real world:

 y Bug fixes, patches and workarounds, updated releases, documentation updates,
and so on.

Of course there are different levels and different kinds of software engineers, and it is
not necessary that the same person combine all the skills needed to design and
develop good software. Usually it takes a whole team of software designers,
programmers, artists, technical writers, QA (Quality Assurance) specialists, and
technical support people.

In this chapter we will first discuss general topics related to software development,
such as high-level programming languages and software development tools. We will
discuss the difference between compilers and interpreters and Java’s hybrid
compiler + interpreter approach. Then we will learn how to compile and run simple
Java applications and applets and take a first look at the concepts involved in object-
oriented programming.

2.2 Compilers and Interpreters

Computer programmers very quickly realized that the computer itself was the perfect
tool to help them write programs. The first step toward automation was made when
programmers began to use assembly languages instead of numerically coded CPU
instructions. In an assembly language, every CPU instruction has a short mnemonic
name. A programmer can give symbolic names to memory locations and can refer to
these locations by name. For example, a programmer using assembly language for
Intel’s 8086 microprocessor can write:

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.2 ~ COMPILERS AND INTERPRETERS 15

index dw 0 ; "Define word" –– reserve 2 bytes
 ; for an integer and call it "index".
 ...
 mov si,index ; Move the value of index into
 ; the SI register.
 ...

A special program, called the assembler, converts the text of a program written in
assembly language into the machine code expected by the CPU.

Obviously, assembly language is totally dependent on a particular CPU; porting a
program to a different type of machine would require rewriting the code. As the
power of computers increased, several high-level programming languages were
developed for writing programs in a more abstract, machine-independent way.
FORTRAN (Formula Translation Language) was defined in 1956, COBOL
(Common Business Oriented Language) in 1960, and Pascal and C in the 1970s.
C++ gradually evolved from C in the 1980s, adding OOP (Object-Oriented
Programming) features to C. languagehistory Java was introduced in the mid-1990s and
eventually gained popularity as a fully object-oriented programming language for
platform-independent development, in particular for programs transmitted over the
Internet. Java and OOP are of course the main subjects of this book, so we will start
looking at them in detail in the following chapters.

A program written in a high-level language obeys the very formal syntax rules of the
language. This syntax produces statements so unambiguous that even a computer can
interpret them correctly. In addition to strict syntax rules, a program follows style
conventions; these are not mandatory but make the program easier to read and
understand for fellow programmers, demonstrating its author’s professionalism.

� � �

A programmer writes the text of the program using a software program called an
editor. Unlike general-purpose word-processing programs, program editors may
have special features useful for writing programs. For example, an editor may use
colors to highlight different syntactic elements in the program or have built-in tools
for entering standard words or expressions common in a particular programming
language.

The text of a program in a particular programming language is referred
to as source code, or simply the source. The source code is stored in a
file, called the source file.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

16 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

Before it can run on a computer, a program written in a high-level programming
language has to be somehow converted into CPU instructions. One approach is to
use a special software tool called a compiler. The compiler is specific to a particular
programming language and a particular CPU. It analyzes the source code and
generates appropriate CPU instructions. The result is saved in another file, called the
object module. A large program may include several source files that are compiled
into object modules separately. Another program, a linker, combines all the object
modules into one executable program and saves it in an executable file (Figure 2-2).

Editor

�
�
.

☺

hello.cpp

�
Source
code

Compiler

�

hello.obj

�

Object
code

Linker

�

hello.exe

Executable
program

C>hello
Hello,World!

Figure 2-2. Software development cycle for a compiled

program: edit-compile-link-run

For a compiled program, once it is built and tested, the executable file is distributed
to program users. The users do not need access to the program’s source code and do
not need to have a compiler.

Java also uses a compiler, but, as we will explain shortly, the Java
compiler does not generate object code.

In an alternative approach, instead of compiling, a program in a high-level language
can be interpreted by a software tool called an interpreter. The difference between a
compiler and an interpreter is subtle but important. An interpreter looks at the high-
level language program, figures out what instructions it needs to execute, and
executes them. But it does not generate an object-code file and does not save any

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.2 ~ COMPILERS AND INTERPRETERS 17

compiled or executable code. A user of an interpreted program needs access to the
program’s source code and an interpreter, and the program has to be interpreted again
each time it is run. It is like a live concert as opposed to a studio recording, and a
live performance needs all the instruments each time.

� � �

A particular programming language is usually established as either a compiled
language or an interpreted language (that is, is either more often used with a compiler
or an interpreter, respectively). FORTRAN, COBOL, Ada, C++ are typically
compiled; BASIC, Perl, Python are interpreted. But there is really no clear-cut
distinction. BASIC, for example, was initially an interpreted language, but soon
BASIC compilers were developed. C is usually compiled, but C interpreters also
exist.

Java is different: it uses a mixed compiler-plus-interpreter approach. A Java
compiler first compiles the program into bytecode, instructions that are pretty close to
a machine language. But a machine with this machine language does not exist! It is
an abstract computer, a Java Virtual Machine (JVM). The bytecode is then
interpreted on a particular computer by the Java interpreter for that particular CPU.
A program in bytecode is not object code, because it is still platform-independent (it
does not use instructions specific to a particular CPU). It is not source code, either,
because it is not readable by humans. It is something in between.

Why does Java use a combination of a compiler and an interpreter? There is no
reason why a regular Java compiler couldn’t be created for a particular type of
computer. But one of the main purposes of Java is to deliver programs to users via
the Internet. A Java-enabled browser (that is, a browser that has a Java interpreter
built into it) can run little Java programs, called applets (miniature applications). The
many applets available free on the Internet, often with their source code, are one of
the reasons why Java has become so popular so fast. When you connect to a web site
and see some elaborate action or interactive features, it may mean that your computer
has received a Java applet and is running it.

Java designers had to address the key question: Should users receive Java source
code or executable code? The answer they came up with was: neither. If users got
source, their browsers would need a built-in Java compiler or interpreter. That would
make browsers quite big, and compiling or interpreting on the user’s computer could
take a long time. Also, software providers may want to keep their source
confidential. But if users got executables, then web site operators would somehow
need to know what kind of computer each user had (for example, a PC or a Mac) and
deliver the right versions of programs. It would be cumbersome and expensive for
web site operators to maintain different versions of a program for every different

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

platform. There would also be a security risk: What if someone delivered a malicious
program to your computer?

Bytecode provides an intermediate step, a compromise between sending source code
or executables to users (Figure 2-3). On one hand, the bytecode’ language is
platform-independent, so the same version of bytecode can serve users with different
types of computers. It is not readily readable by people, so it can protect the
confidentiality of the source code. On the other hand, bytecode is much closer to the
“average” machine language, and it is easier and faster to interpret than “raw” Java
source. Also, bytecode interpreters built into browsers get a chance to screen
programs for potential security violations (for example, they can block reading of and
writing to the user’s disks).

Editor

�
�
. Hello.java

�
Source
code

Compiler

�

Hello.class

�

Bytecode

Interpreter

Hello,
World!

Interpreter

Hello,
World!

 �

Figure 2-3. Java software development and distribution
through the Internet

To speed up the loading of applets, a new software technology has emerged, called
JIT (Just-In-Time) compilers. A JIT compiler combines the features of a compiler
and an interpreter. While interpreting bytecode, it also compiles it into executable
code. (To extend our music analogy, a JIT compiler works like a recording of a live
concert.) This means an applet can be interpreted and start running as soon as it is
downloaded from the Internet. On subsequent runs of the same applet, it can be
loaded and run from its executable file without any delay for reinterpreting bytecode.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.2 ~ COMPILERS AND INTERPRETERS 19

Naturally, bytecode does not have to travel through the Internet to reach the user: a
Java program can be compiled and interpreted on the same computer. That is what
we will do for testing Java applications in our labs and exercises. We do not even
have to use a browser to test an applet: the standard Java Development Kit (JDK) has
a program, called Applet Viewer, that runs applets.

� � �

Modern software development systems combine an editor, a compiler, and other tools
into one Integrated Development Environment (IDE). Some of the software
development tools (a program editor, for example) are built into the IDE program
itself; larger tools (a compiler, an interpreter) are usually stand-alone programs, for
which the IDE only serves as a front end. An IDE has a convenient GUI (Graphical
User Interface) — one mouse click on an icon will compile and run your program.

Modern programs may be rather complex, with dozens of different types of objects
and functions involved. Structure analyzers and viewers built into an IDE create
graphical views of source files, objects, their functions, and the dependencies
between them. GUI visual prototyping and design tools help a programmer design
and implement a graphical user interface.

Few programs are written on the first try without errors or, as programmers call them,
bugs (Figure 2-4).

Figure 2-4. The term “bug” was popularized by Grace Hopper, hopper a legendary
computer pioneer, who was the first to come up with the idea of a compiler and who
created COBOL. One of Hopper’s favorite stories was about a moth that was found
trapped between the points of a relay, which caused a malfunction of the Mark II Aiken
Relay Calculator (Harvard University, 1945). Technicians removed the moth and affixed
it to the log shown in the photograph.

Programmers distinguish syntax errors and logic errors.

Syntax errors violate the syntax rules of the language and are caught by the compiler.
Logic errors are caused by flawed logic in the program; they are not caught by the
compiler but show up at “run-time,” that is when the program is running. Some run-

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

20 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

time errors cause an exception: the program encounters a fatal condition and is
aborted with an error message, which describes the type of the exception and the
program statement that caused it. Other run-time errors may cause program’s
unexpected behavior or incorrect results. These are caught only in thorough testing
of the program.

It is not always easy to correct bugs just by looking at the source code or by testing
the program on different data. To help with this, there are special debugger programs
that allow the programmer to trace the execution of a program “in slow motion.” A
debugger can suspend a program at a specified break point or step through the
program statements one at a time. With the help of a debugger, the programmer can
examine the sequence of operations and the contents of memory locations after each
step.

2.3 Software Components and Packages

Writing programs from scratch may be fun, like growing your own tomatoes from
seeds, but in the present environment few people can afford it. An amateur, faced
with a programming task, asks: What is the most original (elegant, efficient, creative,
interesting, etc.) way to write this code? A professional asks: What is the way to not
write this code but use something already written by someone else? With billions of
lines of code written, chances are someone has already implemented this or a similar
task, and there is no point duplicating his or her efforts. (A modern principle, but
don’t try it with your homework!) Software is a unique product because all of its
production cost goes into designing, coding and testing one copy; manufacturing
multiple copies is virtually free. So the real task is to find out what has been done,
purchase the rights to it if it is not free, and reuse it.

There are many sources of reusable code. Extensive software packages come with
your compiler. Other packages may be purchased from third-party software vendors
who specialize in developing and marketing reusable software packages to
developers. Still other packages may be available for free in the spirit of the open
source opensource philosophy. In addition, every experienced programmer has
accumulated his or her own collection of reusable code.

Reusability of software is a two-sided concept. As a programmer, you want to be
more efficient by reusing existing code. But you also want to write reusable code so
that you yourself, your teammates, your enterprise, and/or the whole world can take
advantage of it later. Creating reusable code is not automatic: your code must meet
certain requirements to be truly reusable. Here is a partial list of these requirements:

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.4 ~ LAB: THREE WAYS TO SAY HELLO 21

 y Your code must be divided into reasonably small parts or components
(modules). Each component must have a clear and fairly general purpose.
Components that implement more general functions must be separated from
more specialized components.

 y Your software components must be well documented, especially the interface
part, which tells the user (in this case, another programmer) what this
component does and how exactly to use it. A user does not necessarily always
want to know how a particular component does what it does.

 y The components must be robust. They must be thoroughly tested under all
possible conditions under which the component can be used, and these
conditions must be clearly documented. If a software module encounters
conditions under which it is not supposed to work, it should handle such
situations gracefully, giving its user a clue when and why it failed instead of just
crashing the system.

 y It should be possible to customize or extend your components without
completely rewriting them.

Individual software components are usually combined into packages. A package
combines functions that deal with a particular set of structures or objects: a graphics
package that deals with graphics capabilities and display; a text package that
manipulates strings of text and text documents; a file package that helps to read and
write data files; a math package that provides mathematical functions and algorithms;
and so on. In Chapter 20, we will talk about Java collections classes, which are part
of the java.util package from the standard Java library. Java programmers can
take advantage of dozens of standard packages that are already available for free;
new packages are being developed all the time. At the same time, the plenitude of
available packages and components puts an additional burden on the software
engineer, who must be familiar with the standard packages and keep track of the new
ones.

2.4 Lab: Three Ways to Say Hello

A traditional way to start exploring a new software development environment is to
write and get running a little program that just prints “Hello, World!” on the screen.
After doing that, we will explore two other very simple programs. Later, in
Section 2.6, we will look at simple GUI applications and a couple of applets.

In this section, we will use the most basic set of tools, JDK (Java Development Kit).
JDK comes from Sun Microsystems, Inc., the makers and owners of Java.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

22 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

JDK includes a compiler, an interpreter, the Applet Viewer program,
other utility programs, the standard Java library, documentation, and
examples.

JDK itself does not have an IDE (Integrated Development Environment), but Sun and
many third-party vendors and various universities and other organizations offer IDEs
for running Java. Eclipse, BlueJ, JCreator are some examples, but there are dozens
of others. This book’s companion web site, www.skylit.com/javamethods, has
a list of several development environments and FAQs (Frequently Asked Questions)
about installing and using some of them.

In this lab the purpose is to get familiar with JDK itself, without any
IDE. However, if you don’t feel like getting your hands dirty (or if you
are not authorized to run command-line tools on your system), you can
start using “power” tools right away. Just glance through the text and
then use an IDE to type in and test the programs in this lab.

We assume that by now you have read Sun’s instructions for installing and
configuring JDK under your operating system and have it installed and ready to use.
In this lab you can test that your installation is working properly. If you are not
going to use command-line tools, then you need to have an IDE installed and
configured as well.

This lab involves three examples of very simple programs that do not use GUI, just
text input and output. Programs with this kind of old-fashioned user interface are
often called console applications (named after a teletype device called a console,
which they emulate). Once you get the first program running, the rest should be
easy.

Our examples and commands in this section are for Windows.

1. Hello, World

JDK tools are UNIX-style command-line tools, which means the user has to type in
commands at the system prompt to run the compiler, the interpreter, or Applet
Viewer. The compiler is called javac.exe, the interpreter is called java.exe, and
Applet Viewer is called appletviewer.exe. These programs reside in the bin
subfolder of the folder where your JDK is installed. This might be, for example,
C:\Program Files\Java\jdk1.6.0_21\bin. You’ll need to make these
programs accessible from any folder on your computer. To do that, you need to set
the path environment variable to include JDK’s bin folder. There is a way to make

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.4 ~ LAB: THREE WAYS TO SAY HELLO 23

a permanent change to the path, but today we will just type it in once or twice,
because we don’t plan on using command-line tools for long.

Create a work folder (for example, C:\mywork) where you will put your programs
from this lab. You can use any editor (such as Notepad) or word processor (such as
Wordpad or MS Word) or the editor from your IDE to enter Java source code. If you
use a word processor, make sure you save Java source files as “Text Only.” But the
file extension should be .java. Word processors such as Word tend to attach the
.txt extension to your file automatically. The trick is to first choose
Save as type: Text-Only (*.txt), and only after that type in the name of
your file with the correct extension (for example, HelloWorld.java).

In your editor, type in the following program and save it in a text file
HelloWorld.java:

/**
 * Displays a "Hello World!" message on the screen
 */
public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

In Java, names of files are case sensitive.

This is true even when you run programs in a Command Prompt window. Make sure
you type in the upper and lower cases correctly.

In the little program above, HelloWorld is the name of a class as well as its source
file. (Don’t worry if you don’t quite know what that means, for now.)

The name of the file that holds a Java class must be exactly the same as
the name of that class (plus the extension .java).

This rule prevents you from having two runnable versions of the same class in the
same folder. Make sure you name your file correctly. There is a convention that the
name of a Java class (and therefore the name of its Java source file) always starts
with a capital letter.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

24 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

The Java interpreter calls the main method in your class to start your
program. Every application (but not an applet) must have a main
method. The one in your program is:

 public static void main(String[] args)

For now, treat this as an idiom. You will learn the meaning of the words public,
static, void, String, and args later.

System is a class that is built into all Java programs. It provides a few system-level
services. System.out is a data element in this class, an object that represents the
computer screen output device. Its println method displays a text string on the
screen.

Examine what you have typed carefully and correct any mistakes — this
will save time.

Save your file and close the editor. Open the Command Prompt window (you’ll find
it under All Programs/Accessories on your Start menu). Navigate to the folder that
contains your program (for example, mywork) using the cd (change directory)
command, and set the path:

C:\Documents and Settings\Owner>cd \mywork
C:\mywork> path C:\program files\java\jdk1.6.0_21\bin;%PATH%

Now compile your program:

C:\mywork> javac HelloWorld.java

If you have mistyped something in your source file, you will get a list of errors
reported by the compiler. Don’t worry if this list is quite long, as a single typo can
cause several errors. Verify your code against the program text above, eliminate the
typos, and recompile until there are no errors.

Type the dir (directory) command:

C:\mywork> dir

You should see files called HelloWorld.java and HelloWorld.class in your
folder. The latter is the bytecode file created by the compiler.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.4 ~ LAB: THREE WAYS TO SAY HELLO 25

Now run the Java interpreter to execute your program:

C:\mywork> java HelloWorld

Every time you make a change to your source code, you’ll need to recompile it.
Otherwise the interpreter will work with the old version of the .class file.

2. Greetings

A Java application can accept “command-line” arguments from the operating system.
These are words or numbers (character strings separated by spaces) that the user can
enter on the command line when he runs the program. For example, if the name of
the program is Greetings and you want to pass two arguments to it, “Annabel” and
“Lee”, you can enter:

C:\mywork> java Greetings Annabel Lee

If you are using an IDE, it usually has an option, a dialog box, where you can enter
command-line arguments before you run the program.

If you are already using your IDE and do not feel like figuring out how
to enter command-line arguments in it, skip this exercise.

The following Java program expects two command-line arguments.

/**
 * This program expects two command-line arguments
 * -- a person's first name and last name.
 * For example:
 * C:\mywork> java Greetings Annabel Lee
 */
public class Greetings
{
 public static void main(String[] args)
 {
 String firstName = args[0];
 String lastName = args[1];
 System.out.println("Hello, " + firstName + " " + lastName);
 System.out.println("Congratulations on your second program!");
 }
}

Type this program in using your editor and save it in the text-only file
Greetings.java. Compile this program:

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

26 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

C:\mywork> javac Greetings.java

Now run it with two command-line arguments: your first and last name.

3. More Greetings

Now we can try a program that will prompt you for your name and then display a
message. You can modify the previous program. Start by saving a copy of it in the
text file Greetings2.java.

/*
 This program prompts the user to enter his or her
 first name and last name and displays a greeting message.
 Author: Maria Litvin
*/

import java.util.Scanner;

public class Greetings2
{
 public static void main(String[] args)
 {
 Scanner kboard = new Scanner(System.in);
 System.out.print("Enter your first name: ");
 String firstName = kboard.nextLine();
 System.out.print("Enter your last name: ");
 String lastName = kboard.nextLine();
 System.out.println("Hello, " + firstName + " " + lastName);
 System.out.println("Welcome to Java!");
 }
}

Our Greetings2 class uses a Java library class Scanner from the java.util
package. This class helps to read numbers, words, and lines from keyboard input.
The import statement at the top of the program tells the Java compiler where it can
find Scanner.class.

Compile Greetings2.java —

C:\mywork> javac Greetings2.java

— and run it:

C:\mywork> java greetings2

What do you get?

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.5 ~ OBJECT-ORIENTED PROGRAMMING 27

Exception in thread "main" java.lang.NoClassDefFoundError: greetings2 (wrong
name: Greetings2)
 at java.lang.ClassLoader.defineClass1(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:620)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:260)
 at java.net.URLClassLoader.access$100(URLClassLoader.java:56)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:195)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:306)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:268)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:251)
 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:319)

Wow! The problem is, you entered greetings2 with a lowercase “G”, and the Java
interpreter cannot find a file called greetings2.class. Remember: Java is case-
sensitive. You can see now why you might want some help from an IDE!

Try again:

C:\mywork> java Greetings2

Now the program should run: it prompts you for your first and last name and displays
a greeting message:

C:\mywork> java Greetings2
Enter your first name: Virginia
Enter your last name: Woolf
Hello, Virginia Woolf
Welcome to Java!

2.5 Object-Oriented Programming

In von Neumann computer architecture, a program is a sequence of instructions
executed by a CPU. Blocks of instructions can be combined into procedures that
perform a certain calculation or carry out a certain task; these can be called from
other places in the program. Procedures manipulate some data stored elsewhere in
computer memory. This procedural way of thinking is suggested by the hardware
architecture, and naturally it prevailed in the early days of computing. In procedural
programming, a programmer has an accurate picture of the order in which
instructions might be executed and procedures might be called. High-level
procedural languages don’t change that fact. One statement translates into several
CPU instructions and groups of statements are combined into functions, but the
nature of programming remains the same: the statements are executed and the

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

28 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

functions are called in a precise order imposed by the programmer. These procedures
and functions work on separately defined data structures.
In the early days, user interface took the form of a dialog: a program would show
prompts asking for data input and display the results at the end, similar to the
Greetings2 program in the previous section. This type of user interface is very
orderly — it fits perfectly into the sequence of a procedural program. When the
concept of graphical user interface (GUI) developed, it quickly became obvious that
the procedural model of programming was not very convenient for implementing
GUI applications. In a program with a GUI, a user sees several GUI components on
the screen at once: menus, buttons, text entry fields, and so on. Any of the
components can generate an event: things need to happen whenever a user chooses a
menu option, clicks on a button, or enters text. A program must somehow handle
these events in the order of their arrival. It is helpful to think of these GUI
components as animated objects that can communicate with the user and other
objects. Each object needs its own memory to represent its current state. A
completely different programming model is needed to implement this metaphor.
Object-oriented programming (OOP) provides such a model.

The OOP concept became popular with the introduction of Smalltalk, smalltalk the first
general-purpose object-oriented programming language with built-in GUI
development tools. Smalltalk was developed in the early 1970s by Alan Kay kay and
his group at the Xerox Palo Alto Research Center. Kay dreamed that when
inexpensive personal computers became available, every user, actually every child,
would be able to program them; OOP, he thought, would make this possible. As we
know, that hasn’t quite happened. Instead, OOP first generated a lot of interest in
academia as a research subject and a teaching tool, and then was gradually embraced
by the software industry, along with C++, and later Java, as the preferred way of
designing and writing software.

One can think of an OOP application as a virtual world of active objects. Each object
has its own “memory,” which may contain other objects. Each object has a set of
methods that can process messages of certain types, change the object’s state
(memory), send messages to other objects, and create new objects. An object
belongs to a particular class, and each object’s functionality, methods, and memory
structure are determined by its class. A programmer creates an OOP application by
defining classes.

Two principles are central to the OOP model: event-driven programs
and inheritance.

In an OOP program many things may be happening at once, and external events (for
example, the user clicks the mouse or types a key, the application’s window is

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.5 ~ OBJECT-ORIENTED PROGRAMMING 29

resized, etc.) can determine the order of program execution. An OOP program, of
course, still runs on sequential von Neumann computers; but the software simulates
parallelism and asynchronous handling of events.

An OOP program usually defines many different types of objects. However, one
type of objects may be very similar to another type. For instance, objects of one type
may need to have all the functionality of another type plus some additional features.
It would be a waste to duplicate all the features of one class in another. The
mechanism of inheritance lets a programmer declare that one class of objects extends
another class. The same class may be extended in several different ways, so one
superclass may have several subclasses derived from it (Figure 2-5). A subclass
may in turn be a superclass for other classes, such as Music is for Audio and MP3.
An application ends up looking like a branching tree, a hierarchy of classes. Classes
with more general features are closer to the top of the hierarchy, while classes with
more specific functionality are closer to the bottom.

CD

Pictures Blank Music Video

MP3 Audio

Figure 2-5. A hierarchy of classes that represent
compact disks with different content

Object-oriented programming aims to answer the current needs in software
development: lower software development and documentation costs, better
coordinated team development, accumulation and reuse of software components,
more efficient implementation of multimedia and GUI applications, and so on. Java
is a fully object-oriented language that supports inheritance and the event-driven
model. It includes standard packages for graphics, GUI, multimedia, events
handling, and other essential software development tools.

Our primary focus in this book is working with hierarchies of classes. Event-driven
software and events handling in Java are considered to be more advanced topics. For
example, they are not included in the Advanced Placement Computer Science course
description. We will discuss events handling in Java and provide examples in
Chapters 17 and 18.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

30 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE DEVELOPMENT

2.6 Lab: More Ways to Say Hello

In Section 2.4 we learned how to run very simple console applications. These types
of programs, however, are not what makes Java great: they can be easily written in
other programming languages.

The features that distinguish Java from other languages are its built-in
support for GUI and graphics and its support for object-oriented
programming.

In this section we will consider four more examples: two applications (one with a
simple GUI object, another with graphics), and two applets (one with graphics and
one with animation). Of course at this stage you won’t be able to understand all the
code in these examples — we have a whole book ahead of us! This is just a preview
of things to come, a chance to get a general idea of what is involved and see how
these simple programs work.

1. A GUI application

In this program, HelloGui.java, we create a standard window on the screen and
place a “Hello, GUI!” message in it. Our HelloGui class extends the JFrame
library class, which is part of Java’s Swing package. We are lucky we can reuse
JFrame’s code: it would be a major job to write a class like this from scratch. We
would have to figure out how to show the title bar and the border of the window and
how to support resizing of the window and other standard functions. JFrame takes
care of all this. All we have left to do is add a label to the window’s content pane —
the area where you can place GUI components.

Our HelloGui class is shown in Figure 2-6. In this program, the main method
creates one object, which we call window. The type of this object is described as
HelloGui; that is, window is an object of the HelloGui class. This program uses
only one object of this class. main then sets window’s size and position (in pixels)
and displays it on the screen. Our class has a constructor, which is a special
procedure for constructing objects of this class. Constructors always have the same
name as the class. Here the constructor calls the superclass’s constructor to set the
text displayed in the window’s title bar and adds a label object to the window’s
content pane.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.6 ~ LAB: MORE WAYS TO SAY HELLO 31

/**
 * This program displays a message in a window.
 */

import java.awt.*;
import javax.swing.*;

public class HelloGui extends JFrame
{
 public HelloGui() // Constructor
 {
 super("GUI Demo"); // Set the title bar
 Container c = getContentPane();
 c.setBackground(Color.CYAN);
 c.setLayout(new FlowLayout());
 c.add(new JTextField(" Hello, GUI!", 10));
 }

 public static void main(String[] args)
 {
 HelloGui window = new HelloGui();

 // Set this window's location and size:
 // upper-left corner at 300, 300; width 200, height 100
 window.setBounds(300, 300, 200, 100);

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setVisible(true);
 }
}

Figure 2-6. JM\Ch02\HelloGui\HelloGui.java

The code in Figure 2-6 is a little cryptic, but still we can see roughly what’s going on.
Do not retype the program — just copy HelloGui.java form the
JM\Ch02\HelloGui folder into your current work folder. Set up a project in your
favorite IDE, and add the class, HelloGui. Compile and run the program using
menu commands, buttons, or shortcut keys in your IDE.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

32 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

2. Hello, Graphics

We will now change our program a little to paint some graphics on the window
instead of a text label. The new class, HelloGraphics, is shown in Figure 2-7.

// This program shows simple graphics in a window.

import java.awt.*;
import javax.swing.*;

public class HelloGraphics extends JPanel
{
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g); // Call JPanel's paintComponent method
 // to paint the background
 g.setColor(Color.RED);

 // Draw a 150 by 45 rectangle with the upper-left
 // corner at x = 25, y = 40:
 g.drawRect(20, 40, 150, 45);

 g.setColor(Color.BLUE);

 // Draw a string of text starting at x = 60, y = 25:
 g.drawString("Hello, Graphics!", 55, 65);
 }

 public static void main(String[] args)
 {
 JFrame window = new JFrame("Graphics Demo");
 // Set this window's location and size:
 // upper-left corner at 300, 300; width 200, height 150
 window.setBounds(300, 300, 200, 150);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 HelloGraphics panel = new HelloGraphics();
 panel.setBackground(Color.WHITE); // the default color is light gray
 Container c = window.getContentPane();
 c.add(panel);

 window.setVisible(true);
 }
}

Figure 2-7. JM\Ch02\HelloGui\HelloGraphics.java

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.6 ~ LAB: MORE WAYS TO SAY HELLO 33

HelloGraphics extends a library class JPanel. Each JPanel object has a
paintComponent method that generates all the graphics contents for the panel.
paintComponent is called automatically whenever the window is opened, resized,
or repainted. These events are reported to the program by the operating system.

By default, JPanel’s paintComponent method only paints the background of the
panel. Our class HelloGraphics redefines (overrides) paintComponent to add a
blue message inside a red box. paintComponent receives an object of the type
Graphics, often called g, that represents the panel’s graphics context (its position,
size, etc.).

The graphics coordinates are in pixels and have the origin (0, 0) at the
upper-left corner of the panel (the y-axis points down).

We have placed the main method into the same class to simplify things. If you wish,
you can split our HelloGraphics class into two separate classes: one, call it
HelloPanel, will extend JPanel and have the paintComponent method; the
other, call it HelloGraphics will have main and nothing else (it doesn’t have to
extend any library class). Your project should include both classes.

3. Hello, Applet

Applets are small programs embedded in web pages and distributed over the Internet.
From a programmer’s point of view, the difference between an applet and a GUI
application is minor. Instead of extending JFrame, your applet’s class extends
JApplet, a Swing library class that represents applet objects. An applet does not
need a main method because the browser (or Applet Viewer) automatically constructs
the applet object and displays it as part of a web document. Instead of a constructor,
your applet class uses the init method to initialize your applet. Figure 2-8 shows
the HelloApplet class adapted from the HelloGraphics class. This applet
redefines JApplet’s paint method to show graphics.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

34 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

/*
 * This applet shows a string of text inside a box.
 */

import java.awt.*;
import javax.swing.*;

public class HelloApplet extends JApplet
{
 public void init()
 {
 Container c = getContentPane();
 c.setBackground(Color.WHITE);
 }

 public void paint(Graphics g)
 {
 super.paint(g); // call JApplet's paint method
 // to paint the background
 g.setColor(Color.RED);
 g.drawRect(25, 40, 150, 45); // draw a rectangle 150 by 45
 g.setColor(Color.BLUE);
 g.drawString("Hello, Applet!", 60, 65);
 }
}

Figure 2-8. JM\Ch02\HelloGui\HelloApplet.java

The code for this applet is shorter than HelloGraphics. But now we need another
file that describes a web page that presents the applet. The contents and layout of
web pages are usually described in HTML (Hypertext Mark-Up Language). You can
find a brief HTML tutorial in Appendix C. Here we can use a very simple HTML
file (Figure 2-9). Let’s call it TestApplet.html. As you can see, some of the
information — the size of the applet’s content pane — has shifted from Java code
into the HTML file. The title bar is no longer used because an applet does not run in
a separate window — it is embedded into a browser’s (or Applet Viewer’s) window.
An applet does not have an exit button either (the browser’s or Applet Viewer’s
window has one).

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.6 ~ LAB: MORE WAYS TO SAY HELLO 35

<html>

<head>
<title>My First Java Applet</title>
</head>

<body>
<applet code="HelloApplet.class" width="300" height="100"
 alt="Java class failed">
Java is disabled
</applet>
</body>

</html>

Figure 2-9. JM\Ch02\HelloGui\TestApplet.html

You can either test your applet directly in your IDE or open it in your Internet
browser. If you have a website, you can upload the TestApplet.html page to your
site, along with the HelloApplet.class file, for the whole world to see.

You can adapt TestApplet.html to run another applet by replacing
HelloApplet.class in it with the name of your new applet class and
adjusting the applet’s size, if necessary.

4. Hello, Action

And now, just for fun, let’s put some action into our applet (Figure 2-10). Compile
the Banner class from JM\Ch02\HelloGui and open the TestBanner.html file
(from the same folder) in the Applet Viewer or in the browser to test this applet.

Look at the code in Banner.java. The init method in this applet creates a Timer
object called clock and starts the timer. The timer is programmed to fire every 30
milliseconds. Whenever the timer fires, it generates an event that is captured in the
actionPerformed method. This method adjusts the position of the banner and
repaints the screen.

You might notice that unfortunately the animation effect in this applet is not very
smooth: the screen flickers whenever the banner moves. One of the advantages of
Java’s Swing package is that it can help deal with this problem. We will learn how to
do it in later chapters.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

36 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

/* This applet displays a message moving horizontally
 across the screen. */

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Banner extends JApplet
 implements ActionListener
{
 private int xPos, yPos; // hold the coordinates of the banner

 public void init()
 {
 Container c = getContentPane();
 c.setBackground(Color.WHITE);
 xPos = c.getWidth();
 yPos = c.getHeight() / 2;
 Timer clock = new Timer(30, this); // fires every 30 milliseconds
 clock.start();
 }

 // Called automatically after a repaint request
 public void paint(Graphics g)
 {
 super.paint(g);
 g.drawString("Hello, World!", xPos, yPos);
 }

 // Called automatically when the timer fires
 public void actionPerformed(ActionEvent e)
 {
 Container c = getContentPane();

 // Adjust the horizontal position of the banner:
 xPos--;
 if (xPos < -100)
 {
 xPos = c.getWidth();
 }

 // Set the vertical position of the banner:
 yPos = c.getHeight() / 2;

 repaint();
 }
}

Figure 2-10. JM\Ch02\HelloGui\Banner.java

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 2.7 ~ SUMMARY 37

2.7 Summary

In the modern development environment, programmers usually write programs in one
of the high-level programming languages such as C++, Python, or Java. A program
written in a high-level language obeys the very precise syntax rules of that language
and must also follow stylistic conventions established among professionals. For
compiled languages, such as C or C++, a software program called the compiler
translates the source code for a program from the high-level language into machine
code for a particular CPU. A compiler creates object modules that are eventually
linked into an executable program. Alternatively, instead of compiling, a program in
a high-level language, such as Python, can be interpreted by a software tool called an
interpreter. An interpreter does not generate an executable program but instead
executes the appropriate CPU instructions immediately.

Java takes a mixed compiler + interpreter approach: the source code is compiled into
code (called bytecode) for the Java Virtual Machine (JVM). JVM is not a real
computer; it is an abstract model of a computer with features typical for different
computer models. Bytecode is still independent of a particular CPU, but is much
closer to a machine language and easier to interpret than the source code. A Java
interpreter installed on a specific computer then interprets the bytecode and executes
the instructions appropriate for that specific CPU.

An IDE (Integrated Development Environment) combines many tools, including an
editor, a compiler, and a debugger, under one convenient GUI (Graphical User
Interface).

The software development profession has evolved from an individual artisan craft
into a highly structured engineering discipline with its own methodology,
professional tools, conventions, and code of ethics. Modern applications are built in
part out of standard reusable components from available packages. Programmers
strive to produce and document new reusable components that meet the reliability,
performance, and style requirements of their organization.

One can think of an OOP (Object-Oriented Programming) application as a virtual
world of active objects. Each object holds its own memory and has a set of methods
that can process messages of certain types, send messages to other objects, and create
new objects. A programmer creates an OOP application by defining classes of
objects. OOP is widely believed to lower software development costs, help
coordinate team projects, and facilitate software reuse.

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

38 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

Exercises

1. Which of the following are the advantages of using a high-level

programming language, as opposed to a machine language? Mark true or
false:

(a) It is easier to write programs. ______
(b) It is easier to read and understand programs. ______
(c) Programs run more efficiently. ______
(d) Programs can be ported more easily from one hardware platform to

another. ______

2. Name four commonly used programming languages besides Java.

3. Mark true or false and explain:

(a) The operating system compiles source files into bytecode or executable

programs. _____

(b) Each modern computer system is equipped with a compiler. ______

4. (MC) Which program helps programmers enter and modify source code?

A. Editor B. Compiler C. Linker D. Interpreter
E. None of the above

5. (MC) What is a debugger used for?

A. Removing comments from the source code
B. Running and tracing programs in a controlled way
C. Running diagnostics of hardware components
D. Removing syntax errors from Java programs
E. Removing dust from the computer screen

6. True or false: a modern IDE provides a GUI front end for an editor,

compiler, debugger, and other software development tools. _____

Sections 2.1-2.3

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 2 ~ EXERCISES 39

7. Describe the differences between a compiler, a JIT compiler, and an
interpreter.

8. (a) Replace the forward slash in the first line of the HelloWorld program

with a backslash. Compile your program and observe the result.

(b) Remove the first three lines altogether. Compile and run your

program. What is the purpose of the /* and */ markers in Java
programs?

9. Write a program that generates the following output:

 xxxxx
 x x
((o o))
 | V |
===

10. Navigate your browser to Oracle’s Java API (Application Programming
Interface) documentation web site
(http://download.oracle.com/javase/6/docs/api/index.html)
or, if you have the JDK documentation installed on your computer, open the
file <JDK base folder>/docs/api/index.html (for example,
C:/Program Files/Java/jdk1.6.0_21/docs/api/index.html).

Find the description of the Color class. What color constants (Color.RED,
Color.BLUE, etc.) are defined in that class?

Section 2.4

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

40 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

11.� (a) Write a program that prompts the user to enter an integer and displays
the entered value times two as follows:

Enter an integer: 5
2 * 5 = 10

Hint: You’ll need to place

import java.util.Scanner;

at the top of your program. The Scanner class has a method
nextInt that reads an integer from the keyboard. For example:

 Scanner keyboard = new Scanner(System.in);
 ...
 int n = keyboard.nextInt();

Use

 System.out.println("2 * " + n + " = " + (n + n));

to display the result.

(b) Remove the parentheses around n + n and test the program again.

How does the + operator work for text strings and for numbers?

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 2 ~ EXERCISES 41

12. Name the two concepts that are central to object-oriented programming.

13. (a) The program Red Cross (JM\Ch02\Exercises\RedCross.java) is

supposed to display a red cross on a white background. However, it
has a bug. Find and fix the bug.

(b)� Using RedCross.java as a prototype, write a program that displays

 in the middle of the window. Hint: the Graphics class has a

method fillOval; its parameters are the same as in the drawRect
method for an oval inscribed into the rectangle.

14.� Modify HelloApplet (JM\Ch02\HelloGui\HelloApplet.java) to show a

white message on a blue background. Hint: Graphics has a method
fillRect that is similar to drawRect, but it draws a “solid” rectangle,
filled with color, not just an outline.

15.� Modify the Banner applet (JM\Ch02\HelloGui\Banner.java) to show a

solid black box moving from right to left across the applet’s window.

Sections 2.5-2.7

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

42 CHAPTER 2 ~ AN INTRODUCTION TO SOFTWARE ENGINEERING

16.� Using the Banner applet (JM\Ch02\HelloGui\Banner.java) as a
prototype, write an applet that emulates a banner ad: it should display a
message alternating “East or West” and “Java is Best” every 2 seconds.

Hints: At the top of your class, define a variable that keeps track of which
message is to be displayed. For example:

 private int msgID = 1;

In the method that processes the timer events, toggle msgID between
1 and -1:

 msgID = -msgID;

Don’t forget to call repaint.

In the method that draws the text, obtain the coordinates for placing the
message:

 Container c = getContentPane();
 int xPos = c.getWidth() / 2 - 30;
 int yPos = c.getHeight() / 2;

Then use a conditional statement to display the appropriate message:

 if (msgID == 1)
 {
 ...
 }
 else // if msgID == -1
 {
 ...
 }

C
op

yr
ig

ht
 ©

 2
01

1
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

