Second AP’ Edition
— with GridWorld

Java
Methods

Object-Oriented Programming
and
Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin
Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
email: sales@skylit.com
support@skylit.com

Copyright © 2011 by Maria Litvin, Gary Litvin, and
Skylight Publishing

All rights reserved. No part of this publication may be reproduced,
stored in aretrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the authors and Skylight Publishing.

Library of Congress Control Number: 2010915303

ISBN 978-0-9824775-7-1

" AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercialy available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

SCRABBLE? is the registered trademark of HASBRO in the United States and Canada and
of JW. Spear and Sons, PLC, a subsidiary of Mattel, Inc., outside the United States and
Canada.

12345678910 16 15 1413 12 11

Printed in the United States of America

Copyright © 2011 by Skylight Publishing

oo er| a8

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

Objectsand Classes

Prologue 44

Case Sudy: GridWorld 45

Classes 49

Lab: Interacting with Actors 56
Fields, Constructors, and Methods 56
Inheritance 63

Lab: Random Bugs 68

Summary 70

Exercises 72

43

Copyright © 2011 by Skylight Publishing

44 CHAPTER 3 ~ OBJECTS AND CLASSES

3.1 Prologue

Non-technical people sometimes envision a computer programmer’s job as sitting at
a computer and writing lines of code in a cryptic programming language. Perhaps
this is how it might appear to a casual observer. This is not so. The work of a
programmer (now called a software engineer) involves not only lines and pages of
computer code, but also an orderly structure that matches the task. Even in the
earliest days of the computer era, when programs were written directly in machine
code, a programmer first developed a more or less abstract view of the task at hand.
The overal task was split into meaningful subtasks; then a set of procedures was
designed that accomplished specific subtasks; each procedure, in turn, was divided
into meaningful smaller segments.

A software engineer has to be able to see the big picture or to zoom in on more
intricate details as necessary. Over the years, different software development
methodol ogies have evolved to facilitate this process and to help programmers better
communicate with each other. The currently popular methodology is Object-
Oriented Programming (OOP). OOP is considered more suitable than previous
methodol ogies for:

e Team work
* Reuse of software components
* GUI development

* Program maintenance

‘ In OOP, a programmer envisions a software application as a virtual
‘ world of interacting objects.

Thisworld is highly structured. To think of objectsin a program simply asfish in an
ocean would be naive. If we take the ocean as a metaphor, consider that its objects
include idands, boats, the sails on the boats, the ropes that control the sails, the
people on board, the fish in the water, and even the horizon, an object that does not
physically exist! There are objects within objects within objects, and the whole
ocean is an object, too.

Copyright © 2011 by Skylight Publishing

3.2 ~ CASE STUDY: GRIDWORLD 45

The following questions immediately come to mind:
* Who describes all the different types of objectsin a program? When and how?
» How does an object represent and store information?
* When and how are objects created?
* How can an object communicate with other objects?

* How can objects accomplish useful tasks?

WEe'll start answering these questions in this chapter and continue through the rest of
the book. Our objective in this chapter is to learn the following terms and concepts:
object, class, CRC card, instance variable or field, constructor, method, public vs.
private, encapsulation and information hiding, inheritance, ISA and HASA
relationships.

In this chapter we will refer to the GridWorld case study, developed by the College
Board's AP Computer Science Development Committee for AP Computer Science
courses and exams. GridWorld is aframework, a set of Java classes that can be used
to create animations and games that involve “actors’ in a rectangular grid. The
GridWorld materials and code are available free of charge under the GNU license at
the College Board' s web site.

‘ See ww. skylit.com javamet hods/ faqs/ for instructions on how to
I8 download the GridWorld materials and configure and run GridWorld
proj ects.

In this chapter we will work only with Part 1 and Part 2 of GridWorld. We will
return to GridWorld again in Chapters 11 and 13.

3.2 Case Study: GridWorld

The window in Figure 3-1 comes from the BugRunner program in the Gridworld
case study. How does one write a program like this in OOP style? A good place to
start isto decide what types of objects are needed.

‘ An object in a running program is an entity that models an object or
‘ concept from the real world.

Copyright © 2011 by Skylight Publishing

46 CHAPTER 3 ~ OBJECTS AND CLASSES

Some of the objects in a program may model real-world objects, such as a rock, a
flower, or a bug. There are also GUI objects that are visible or audible: buttons,
dliders, menus, images, audio clips, and so on. Other objects may represent abstract
concepts, such as arectangular grid or alocation.

® GridWorld (==

World Location Help

Click on a grid location fo construct or manipulate an actor.

L
‘

(b

&

&
+*

Figure 3-1. A window from the BugRunner program in GridWorld

‘ Each object in a running program has a set of attributes and behaviors.
The object’s attributes hold specific values;, some of these values can
change whilethe program isrunning.

For example, in GridWorld, a “bug” object has such attributes as location, direction,
and color, and such behaviors as moving and turning. The location or direction of a
bug changes after each step.

Copyright © 2011 by Skylight Publishing

3.2 ~ CASE STUDY: GRIDWORLD 47

A program often employs several objects of the same type. Such objects are said to
belong to the same class. We also say that an object is an instance of its class.

‘ Objects of the same class have the same set of attributes and behaviors;
‘ they differ only in the values of some of their attributes.

In Figure3-1, for example, you can see four “bugs,” three “rocks’ and five
“flowers,” that is, four objects of the Bug class, three objects of the Rock class, and
five objects of the FI ower class. The flowers have different locations and colors; the
bugs have different locations, directions, and colors.

‘ In GridWorld, bugs, flowers, rocks, and other inhabitants of the grid
‘ are called actors.

I It is important to distinguish objects from their visual representations in a GUI
program. In a well-designed program, visual representations of objects are separate
from abstract models of their behavior. For example, in GridWorld, a flower, arock,
or another “actor” is displayed as an image. The images are stored in separate image
files, and it is possible to change them without rebuilding the program. In fact, a Bug
object will remain a Bug even if a program does not display it al and just prints out
some information about its location and direction. Similarly, GUI components
(buttons, menus, etc.) are rather abstract entities. Their appearance can be modified
to match the native look and feel of the operating system. The labels on menus and
buttons, text messages, and program help text might be stored separately, too, so that

t they can be easily trand ated into different languages.

=

I
Read Part 1 of the GridWorld Student Manual. Set up a project with the BugRunner
class (located in GridWorld's first Proj ect folder) and the GridWorld library,
gridworld.jar. (Seeww.skylit.con javanmethods/faqgs/ for instructions
on how to set up GridWorld projects.) Experiment with the program and notice how
different types of “actors’” behave in the program. A bug moves forward when it can;
otherwise it turns 45 degrees clockwise. A bug leaves a flower in its wake when it
moves forward. A flower stays in one place, but it gets darker as it gets older. A

rock just sits there and does nothing. Each of these actors “knows’ the grid to which
it belongs and its own location and direction in the grid.

R/ 7 /
0‘0 0‘0 0‘0

Copyright © 2011 by Skylight Publishing

48 CHAPTER 3 ~ OBJECTS AND CLASSES

Sometimesit is hard to decide whether two objects have serious structural differences
and different behaviors and should belong to different classes or if they differ only in
the values of some of their attributes. A color is just an attribute, so flowers of
different colors are objects of the same class. But if we wanted to have carnivorous
flowers that could catch and “eat” bugs, we would probably need a separate class to
describe such objects. In OOP languages it is possible to compromise: an object can
belong to a subclass of a given class and can “inherit” some of the code (data
attributes and behaviors) from its parent class. For example, Car ni vor ousFl ower
can be a subclass of Fl ower. In GridWorld, a Bug, a Rock, a Fl ower are different
types of “actors’ and Bug, Rock, and Fl ower are all subclasses of the class Act or .
Act or istheir superclass. More on thislater (Section 3.6).

The rest of the visible objects in Figure 3-1 are GUI components. There is a menu
bar, a text area for messages, and the control panel at the bottom with three buttons
and adlider.

Finally, we see an object that represents the whole window in which the program is
running. This object holds the grid and the GUI components.

The BugRunner program also uses several abstract types of objects. For example, the
location of an actor is represented by an object of the class Locat i on, which has the
attributes row and column. A color is represented by an object of the Java library
class Col or. Another invisible object is a timer that sets the pace when the user
presses the Run button. The Ti mer class also comes from the Javalibrary.

R/ R/
0.0 0’0 *,

0'0

In OOP, alot of the emphasis shifts from software development to software design.
The design methodology, object-oriented design (OOD), parallels the programming
methodology (OOP). A good design makes implementation easier. But object-
oriented design itself is not easy, and a bad design may derail a project.

The design phase starts with a preliminary discussion of the rough design. One of the
informal techniques the designers might use is CRC cards. CRC stands for “Class,
Responsihilities, Collaborators.” A CRC card is simply an index card that describes
a class of objects, including the class's name, the main “responsibilities’ of this type
of object in the program, and its “collaborators,” that is, other classes that it depends
on (Figure 3-2).

Copyright © 2011 by Skylight Publishing

3.3 ~ CLASSES 49

Bug
Occuples a location tn the Actor
orid Grid
Moves Locatlon

Turns
Acts: moves Lf Lt can,
otherwise turns.

Figure3-2. A CRC card for the class Bug

At thisinitial stage, software designers do not have to nail down all the details. The
responsibilities of each type of object are described in general terms. The need for
additional types of objects may become apparent later in the process.

3.3 Classes

In Java, a programmer must describe the different types of objects used in a program
in the program’ s source code.

‘ A class is a piece of the program’s source code that describes a
I particular type of objects. A formal description of a class is called a
| class definition or a class declaration. Programmers write class
| definitions.

Informally, we say that programmers write classes and that the source code of a Java
program consists of one or several classes.

Figure 3-3 summarizes the concepts of a class and an object and the differences
between them.

Copyright © 2011 by Skylight Publishing

CHAPTER 3 ~ OBJECTSAND CLASSES

Class:

Object:

A piece of the program’ s source code

An entity in arunning program

Written by a programmer

Created when the program is running

Specifies the structure (the number
and types of attributes) for the objects
of this class, the same for al of its
objects

Holds specific values of attributes;
some of these values can change
while the program is running

Specifies the possible behaviors of its
objects — the same for all of its
objects

Behaves appropriately when called
upon

A Java program’ s source code
consists of several classes

A running program can create any
number of objects (instances) of a
class

Like ablueprint for building cars of a
particular model

Like a car of aparticular model that
you can drive

Figure 3-3. Classvs. object

A class is sometimes compared to a cookie cutter: all objects of the class have the
same configuration but might have different flavors. When the program is running,
different objects of the same class may have different values of attributes. A more
apt comparison for a class, perhaps, would be a blueprint for making a specific model
of acar. Like objects of the same class, cars of the same model have identically
configured parts, but they may be of different colors, and when a car is running, the
number of peoplein it or the amount of gas in the tank may be different from another
car of the same model.

‘I The source codefor aclassisusually stored in a separatefile.

For example, Actor, Rock, Bug, Flower, Location, ActorWrld, and
BugRunner are some of the GridWorld classes. Their source code can be found in
G i dWor | dCode\ f r amewor k\ i nf o\ gri dwor | d subfolders.

Copyright © 2011 by Skylight Publishing

3.3 ~ CLASSES 51

[All in al, the GridWorld framework includes 24 classes and one interface (we will
talk about interfaces in Chapter 11). In addition, Gri dWor| dCode\ proj ect s
subfolders hold the source code for eight project classes, including BugRunner,

tBoxBug, and BoxBugRunner .

‘ In Java, the name of the sour ce file must be the same as the name of the
‘ class, with the extension . j ava.

For example, aclass Fl ower must be stored in afile named Fl ower . j ava.

‘ In Java, all names, including the names of classes, are case-sensitive. By
| convention, the names of classes (and the names of their source files)
‘ always start with a capital letter.

A class describes three aspects that every instance (object) of this class has. (1) the
data elements (attributes) of an object of this class, (2) the ways in which an object of
this class can be created, and (3) what thistype of object can do.

‘ An object’s data elements are called instance variables or fields.
I Procedures for creating an object are called constructors. Behaviors of
‘ an object of aclassare called methods.

The class describes all these features in a very formal and precise manner.

‘ Not every class has fields, constructors, and methods explicitly defined:
some of these features might be implicit or absent.

[Also some classes don't have objects of their type ever created in the program. For
example, the Hel | owor | d program (Chapter 2, page 23) is described by the class
Hel | oWor | d, which has only one method, mai n. This program does not create any
objects of this class. The mai n method is declared st at i ¢, which means it belongs
to the class as a whole, not to particular objects. It is called automatically when the

tprogram is started.

Figure 3-4 shows a schematic view of a class's source code (adapted from
GridWorld' s Act or class).

52 CHAPTER 3 ~ OBJECTS AND CLASSES

Copyright © 2011 by Skylight Publishing

AP(r) Conputer Science Gidwrld Case Study:
Copyright(c) 2005-2006 Cay S. Horstmann (http://horstmnn.com

This code is free software; you can redistribute it and/or nodify
it under the terms of the GNU General Public License as published by
the Free Software Foundation...

@ut hor Cay Hor st mann
/

*k ok k% Ok 3k ok Ok F

i”nf)ort info.gridworld.grid. Gid;
import info.gridworld. grid.Location; Import statements
import java.awt . Col or;

/**

* An Actor is an entity with a color and direction that can act.
*/

public class Actor — Header

{
private Gid<Actor> grid;
private Location |ocation; .
private int direction; Instance variables

private Col or color; (fields)

/**

* Constructs a blue actor that is facing north.
*/

public Actor()

{

col or = Col or. BLUE;
direction = Location. NORTH;
grid = null;

location = null;

}

— Constructor(s)

| **

* Moves this actor to a new location. |f there is another
* actor at the given location, it is renoved.

*/

public void noveTo(Location newlLocation)

{
}

/**

* Qverride this nethod in subclasses of Actor to define
* types of actors with different behavior
*/

public void act()

{

}

— Methods

Figure 3-4. A schematic view of a class's sour ce code

3.3 ~ CLASSES 53

Copyright © 2011 by Skylight Publishing

Y ou can see the following elements:

1. Ancomment at the top

It isagood ideato start the source code of each Java class with a comment that
briefly describes the purpose of the class, its author, perhaps the copyright
arrangement, history of revisions, and so on. Usually, the header of a class and
each important feature of the class (each field, constructor, and method) is
preceded by a comment, which describes the purpose of that feature. The
compiler ignores all comments.

2 “import” statements, if necessary

i mport statements tell the compiler where to look for other classes used by this
class. They may refer to

* other classes created by you or another programmer specifically for the same
project;

* more general reusable classes and packages created for different projects,
» Javalibrary classes.

The compiler automatically finds the definitions of the needed classes, as long as
they are located in the same folder asthis class. But you need to tell the compiler
where to find Java library classes and classes from different packages that reside
in other foldersor in “jar” files. A Java archive (. j ar) fileisafile that contains
several pre-compiled classes (. cl ass files) in compressed form. For example,
all of the GridWorld framework classes are collected in one jar file,
gridworld.jar. A jarfile maintains the same structure of folders asin folders
that are not compressed. Javalibrary classes are collected in . j ar files, too.

If you examine GridWorld’ s source code, you will see that the Act or . j ava file
resides in the framewor k/ i nfo/ gri dworl d/ act or folder. The Grid and
Location classes used by the Actor class reside in a different folder,
framewor k/info/gridworld/grid. So the Actor class needs i nport
statements for these two classes:

import info.gridworld.grid. Gid;
import info.gridworld.grid.Location;

Act or also uses the Java library class Col or, so the code for the Act or class
hasani nport statement for it, too:

54 CHAPTER 3 ~ OBJECTS AND CLASSES

Copyright © 2011 by Skylight Publishing

i mport java.awt. Col or;

This statement tells the compiler that it can find the Col or class in the
j ava. awmt package®®" of the Java's standard library. Or we could put

import java.awt.*;

Then the compiler would search the entirej ava. awt package for the classes that
it couldn’t find elsewhere.

I Without i nport statements, you would have to use the fully-qualified names of
library classes everywhere in your code, asin

private info.gridworld.grid.Location |ocation;
private java.awt . Col or col or;

instead of

private Location |ocation;
private Col or color;

t Thiswould clutter your code.

3. The class header

The import statements are followed by the class header. The header —

public class Actor

— states that the name of this class is Act or and that this is a “public” class,
which meansit is visible to other classes.

4. The class definition body

The class header is followed by the class definition body within braces.

‘ The order of fields, constructors, and methods in a class definition does
| not matter for the compiler, but it is customary to group all the fields
| together, usually at thetop, followed by all the constructors, and then all
‘ the methods.

Copyright © 2011 by Skylight Publishing

3.3 ~ CLASSES 55

When a Java application starts, control is passed to the mai n method. In the
BugRunner application, the main method resides in the BugRunner class.
BugRunner is different from the classes we described above (Act or , Bug, Fl ower,
Rock): it is not used to define objects, and it has no instance variables or
constructors; mai n isits only method (Figure 3-5).

(conmment)

import info.gridworld.actor.ActorWrld;
import info.gridworld. actor. Bug;
import info.gridworld.actor. Rock;

(conment)
public class BugRunner

public static void main(String[] args)
{
ActorWorld world =
wor | d. add(new Bug()
wor | d. add(new Rock(
wor | d. show() ;

new ActorVWorl d();
)
)

Figure 3-5. Fragmentsfrom BugRunner. j ava

Thewordstaticinpublic static void main(...) indicatesthat the method
mai n isnot called for any particular object: it belongs to the class asawhole. Infact,
mai n is called automatically when a Java application is started. A Java application
can have only one mai n method.

We could place nai n in any class, but it is cleaner to put it in a separate class. The
name of the class, BugRunner , is chosen by its author; it could be called BugTest or
Fi r st Proj ect instead. BugRunner’s mai n method creates awor | d (an object of
the type Act or Wr | d) and adds one Bug object and one Rock object to wor | d (at
random locations) by calling wor | d’s add method for each of the added actors. It
then displays wor | d by calling its method show and waits for a command from the
user.

Copyright © 2011 by Skylight Publishing

56 CHAPTER 3 ~ OBJECTS AND CLASSES

3.4 Lab: Interacting with Actors

‘ The author of GridWorld implemented in it the direct manipulation
I interface feature, which allows you to invoke constructors and call
| methods of different actors interactively, by clicking on occupied and
‘ empty cellsof the grid.

This feature is described in GridWorld's help, accessible from the Hel p menu. If
you click on an empty sguare in the grid, a menu will pop up that lists al the
constructors for different types of actors that are currently in the grid. You can
choose one of the constructors, and the corresponding type of actor will be added to
the grid at that location. If you click on a sguare that already contains an actor, a
menu pops up that lists all the methods for that type of actor. If you choose one, that
method will be executed. Y ou can also choose (click on) an actor and press Del et e
to remove that actor from the grid.

This interactive feature is provided for study purposes only — in general it is not
required (or easy to implement) in atypical OOP program.

e

%
Experiment with the BugRunner program. Add a few bugs and flowers of different
colors interactively, when the program is aready running. Also add an Act or
object. (Act or’s constructor is listed among other constructors because Act or isthe
superclass for more specific types of actors, such as Bug, Fl ower , etc.) Make one of
the bugs move, turn, and “act” by invoking the respective methods from the pop-up
menu. Change the color of the Act or by invoking its set Col or method. Observe

how the Act or “acts’ by invoking its act method. Then delete some of the actors
from the grid.

3.5 Fidds, Constructors, and M ethods

As we said earlier, the definition of a class describes al the instance variables of
objects of this class. Instance variables are also called data fields or simply fields,
from the analogy with fields in aform that can be filled in with different values.

Copyright © 2011 by Skylight Publishing

3.5 ~ FIELDS, CONSTRUCTORS, AND METHODS 57

Each field has a name, given by a programmer, and a type. An Act or object, for
example, has four fields:

private Gid<Actor> grid;
private Location |ocation;
private int direction;
private Col or color;

Think of an object’s instance variables as its private “memory.” (This is only a
metaphor, of course: in reality, when a program is running, its objects are represented
by chunks of RAM.) An object’s “memory” may include other objects, and also
numbers and text characters. (In Java, humbers and text characters are usually not
represented by objects; for them Java provides specia data types, i nt, char, etc.,
called primitive data types.)

Thegrid field in Act or refersto the grid to which this actor belongs. The type of
thisfieldisG i d<Act or >. | ocat i on isanother field; itstypeisLocat i on: that is,
it isan object of the Locat i on class. col or isanother field; itstypeisCol or. An
OOP designer would say that an Actor HASA (has a) G i d<Actor>, HASA
Locati on, and HAS-A Col or . We can show these relationships between classesin
aUML (Unified Modeling Language) diagram:

Grid<Actor>

Actor K o>——— Location

Color

An object is created with the new operator, which invokes (calls) one of the
constructors defined in the abject’ s class. For example:

Actor alice = new Actor();

A constructor is a procedure, usually quite short, that is used primarily to initialize
the values of the instance variables for the object being created.

Copyright © 2011 by Skylight Publishing

58 CHAPTER 3 ~ OBJECTS AND CLASSES

For example:

public Actor()

{
col or = Col or. BLUE;

direction = Locati on. NORTH;
grid = null; /1 will be set later when this actor is
location = null; 1/ added to a grid

}

‘I A constructor must always have the same name asits class.

A constructor can accept one or more parameters or no parametersat all. The latter
is called a “no-args’ constructor (parameters are often caled “arguments,” as in
math, or “args’ for short).

A class may have several constructors that differ in the number and/or
types of parametersthat they accept.

For example, the Bug class defines two constructors:

public Bug()
{

set Col or (Col or. RED) ;
}

and

publ i ¢ Bug(Col or bugCol or)
{

set Col or (bugCol or);
}

The first one is a no-args constructor; it creates a red bug; the second takes one
parameter, color, and creates a bug of that color. (Both constructors call Act or’s
set Col or method to set the color of the actor.)

‘ The number, types, and order of parameters passed to the new operator
I when an object is created must match the number, types, and order of
‘ parameter s accepted by one of the class' s constructors.

Copyright © 2011 by Skylight Publishing

3.5 ~ FIELDS, CONSTRUCTORS, AND METHODS 59

For example, if we wanted to add a green bug to wor | d at location (2, 3) we could
write:

Location | oc = new Location(2, 3);
Bug bob = new Bug(Col or. GREEN) ;
wor | d. add(| oc, bob);

or simply
wor | d. add(new Location(2, 3), new Bug(Col or. GREEN));

IWhen an object is created, a chunk of RAM is allocated to hold it, and new returns a
reference to that location, which is basically the object’s address in RAM. The
reference may be stored in avariable:

Fieldsin Act or Act or object

hold references to
Gid,Location, i
and Col or objects

—> Locat i on object

— G i d object

———| Col or object

Eventually severa variables may hold references to the same object. If you compare
an object to a web page, a reference is like the page’s URL (web address). Many
users may have that URL saved somewhere in their “favorites’ or in their own web
pages. A Java interpreter is equipped with a mechanism that keeps track of al the
references to a particular object that are currently in existence in a running program.
Gradually the references to an object may all cease to exist. Then the object is
unreachable, because no other object in the program can find it or knows it exists.
The Java interpreter finds and destroys such useless objects and frees the memory
t they occupied. This mechanism is called garbage collection.

Each Java class has at |east one constructor. If you don't define any, the compiler
supplies a default no-args constructor that initializes all the instance variables to
default values (zeroes for numbers, nul | for objects, f al se for bool ean fields).

Copyright © 2011 by Skylight Publishing

60 CHAPTER 3 ~ OBJECTS AND CLASSES

Since Bug is a subclass of Actor, Bug’s constructors first call Act or’s no-args
constructor to initialize Act or ’s instance variables. These calls are implicit — they
are not shown in Bug’s code.

I But it is possible to call a superclass's constructor explicitly and pass parametersto it
tusi ng the keyword super .

R/ R/
0’0 0’0 *,

0'0

Metaphorically speaking, an object can “send messages’ to other objects. In Java, to
“send a message” meansto call another object’s method. A method is afunction or a
procedure that performs a certain task or computation. All of an object’s methods are
described in its class definition, and all the objects of a given class have exactly the
same set of methods. The methods define what an object can do, what kind of
“messages’ it “understands’ and can respond to.

Does a method belong to an object or to a class? The terminology here is not very
precise. When we focus on a running program, we say that an object has a method,
meaning that we can call that method for that particular object. When we focus on
the program’s source code, we say that a class has a method, meaning that a
programmer included code for the method in the class definition.

Each method has a name, given by the programmer. Like a constructor, a method
may accept one or more parameters. For example, once we have created an object
al i ce of the Act or classand added it to agrid, we can call itsnoveTo method:

al i ce. noveTo(l oc);

This statement moves al i ce to the Locati on | oc. The compiler understands this
statement because we have defined the noveTo method in the Act or class.

‘ Parameters passed to a method must match the number, types, and
‘ order of parametersthat the method expects.

Empty parentheses in a method' s header indicate that this method does not take any
parameters. Such a method is called with empty parentheses. For example, if bob is
aBug, wecan call itst ur n method:

bob. turn();

A method may return a value to the caller. The method's header specifies whether
the method returns a value or not, and if it does, of what type. For example, Act or’s
get Locat i on method returns this actor’s location:

Copyright © 2011 by Skylight Publishing

3.5 ~ FIELDS, CONSTRUCTORS, AND METHODS 61

public Location getlLocation()

{
}

return | ocation;

‘ The keyword voi d in a method’s header indicates that the method does
‘ not return any value.

For example, Bug’s nove and t ur n methods are declared voi d. The mai n method
isvoi d, too.

A method can call other methods of the same object or of a different object. For
example, Bug's act method calls its canMove method and then its nove or turn
methods:

public void act()

{
if (canMove())

move() ;
el se
turn();

Fl ower 'sact method calls Fl ower 's get Col or and set Col or methods (inherited
from Act or) and Col or 'sget Red, get Gr een, and get Bl ue methods (which return
the red, green, and blue components of the color):

public void act()

{
Color ¢ = getColor();

int red = (int) (c.getRed() * (1 - DARKENI NG FACTOR));
int green = (int) (c.getGeen() * (1 - DARKENI NG FACTOR));
int blue = (int) (c.getBlue() * (1 - DARKEN NG FACTCR));

set Col or (new Col or(red, green, blue));

The Act or class provides a well-defined functionality through its constructors and
public methods. The user of the Act or class (possibly a different programmer) does
not need to know all the details of how the class Act or works, only how to construct
its objects and what they can do. In fact, al the instance variables in Act or are
declared pri vat e so that programmers writing classes that use Act or cannot refer
to them directly. Some of class's methods can be declared private, too. This
technique is called encapsulation and information hiding.

Copyright © 2011 by Skylight Publishing

62 CHAPTER 3 ~ OBJECTS AND CLASSES

There are two advantages to such an arrangement:

* Actor’s programmer can change the structure of the fields in the Act or class,
and the rest of the project won't be affected, as long as Act or ’'s constructors
and public methods have the same specifications and work as before;

e Actor’s programmer can document the Actor class for the other team
members (and other programmers who want to use this class) by describing all
its constructors and public methods; there is no need to document the
implementation details.

It is easier to maintain, document, and reuse an encapsulated class.

e

i

%
After aclassiswritten, it isagood ideato test it in isolation from other classes. The
Act or classistoo complicated to be tested in its entirety outside GridWorld, but we

can create a small program that tests some of Act or’s features, for example, its
get DirectionandsetDirecti on methods:

import info.gridworld.actor. Actor;
public class TestActor
public static void main(String[] args)

{

/Il create an Actor called alice

Systemout.println(alice.getDirection());

/1l call alice's setDirection nethod
/1 with the paraneter 90

Systemout.printlin(alice.getDirection());

}
}

Type in the above code, filling in the blanks, and save it in afile Test Act or . j ava.
Create a project that includes the Test Act or class and the GridWorld library, and
test your program. Explain the output. Now try to call set Di recti on with the
parameter 500. Explain the output.

Copyright © 2011 by Skylight Publishing

3.6 ~ INHERITANCE 63

3.6 Inheritance

A Bug does not have a method to reverse direction. It would be easy to add a method
t ur nAr ound to the Bug class. But there are severa reasons why adding methods to
an existing class may be not feasible or desirable.

First, you may not have access to the source code of the class. It may be a library
class or aclass that came to you from someone else without its source. For example,
if youonly had gri dwor | d. j ar and BugRunner . j ava, but not the source code for
other classes, you could still run GridWorld projects, but you couldn’t change
Bug.j ava. Second, your boss may not alow you to change a working and tested
class. You may have access to its source, but it may be “read-only.” A large
organization cannot allow every programmer to change every class at will. Once a
class is written and tested, it may be off-limits until the next release. Third, your
class may aready be in use in other projects. If you change it now, you will have
different versions floating around and it may become confusing. Fourth, not all
projects need additional methods. If you keep adding methods for every
contingency, your class will eventually become too large and inconvenient to use.

The proper solution to this dilemmaisto derive a new class from an existing class.

‘ In OOP, a programmer can create a new class by extending an existing
I} class. The new class can add new methods or redefine some of the
I existing ones. New fields can be added, too. This concept is called
‘ inheritance.

Inheritance is one of the fundamental OOP concepts, and all OOP languages support

It
‘I Java uses the keyword ext ends to indicate that a class extends another
‘ class.

For example,

public class BoxBug extends Bug

{
.

64 CHAPTER 3 ~ OBJECTS AND CLASSES

If class D extends class B, then B is called a superclass (or a base class) and D is
called a subclass (or a derived class). The relationship of inheritance is usualy
indicated in UML diagrams by an arrow with a triangular head from a subclass to its
superclass:

Superclass
(Base Class)

T

Subclass
(Derived Class)

In Javayou can extend a class without having its source code.

‘ A subclass inherits all the methods and fields of its superclass.
‘ Constructorsare not inherited; a subclass hasto provideits own.

Iln Java every class extends the library class (hj ect by default. So all the classesin
a program belong to one large hierarchy of classes with bj ect at thetop. Obj ect
supplies afew common methods, including t oSt ri ng and get d ass.

In our example, we create a new class UTur nBug, which extends Bug:

Bug

|

UTurnBug

Copyright © 2011 by Skylight Publishing

UTur nBug is a short class (Figure 3-6). It has two constructors that parallel Bug’'s
constructors and adds one method, t ur nAround. It also overrides (redefines) the
Bug’'s act method. We should not duplicate Bug's or Act or’s other methods and
fieldsin the UTur nBug class, asthey are inherited from Bug and Act or .

Copyright © 2011 by Skylight Publishing

3.6 ~ INHERITANCE

65

* % * X *

A subcl ass of Bug that adds the turnAround nethod and
redefines Bug's act nethod so that this bug
makes a U-turn when it can't nove

/

import info.gridworld.actor. Bug;
i mport java.awt. Col or;

public class UTurnBug extends Bug

{

publ i ¢ UTur nBug()

set Col or (Col or. YELLOW ;
}

publ i ¢ UTur nBug(Col or bugCol or)

set Col or (bugCol or);
}

public void turnAround()
{
turn(); turn(); turn(); turn();
/Il O: setDirection(getDirection() + 180);
}

/1l Overrides Bug's act method
public void act()

if (canMove())
move();

el se
tur nAround() ;

Figure3-6. JM Ch03\ Gri dwer | d\ UTur nBug. j ava

Copyright © 2011 by Skylight Publishing

66 CHAPTER 3 ~ OBJECTS AND CLASSES

[l
=2
%
Set up a GridWorld project with the BugRunner class and the UTur nBug class (from
JM ChO3\ Gri dWor | d\ UTur nBug. j ava). Add a statement to BugRunner to add a
UTur nBug to wor | d. Run the program and test UTur nBug’st ur nAr ound method,

first interactively, by invoking it from the pop-up menu, then by running the program
through several steps.

In the UTur nBug example, UTur nBug’ s constructors take the same number and types
of parameters as Bug’s constructors. In general, this does not have to be the case.
BoxBug, for example, has only one constructor, and it takes one parameter, an integer
(which specifies the number of steps before aturn).

Also, natice aparadox. Our UTur nBug bug inherits all the fields from Bug, whichin
turn has inherited all the fields from Act or . So aUTur nBug hasadi r ect i on field.
However, this and other fields are declared pri vat e in Act or. This means that the
programmer who wrote the UTur nBug class did not have direct access to them (even
if he is the same programmer who wrote Act or!). Recall that the Act or classis
fully encapsulated and all itsfields are private. So the statement

direction = direction + 180;

won't work in UTur nBug. What do we do? Act or’s subclasses and, in fact, any
other classes that use Act or might need access to the values stored in the private
fields.

To resolve the issue, the Act or class provides public methods that simply return the
values of its private fields: get Di r ect i on, get Locat i on, get Col or, get Gri d.

‘ Such methods are called accessor methods (or simply accessors) or
Il getters because they give outsider s access to the values of private fields of
‘ an object.

It is avery common practice to provide accessor methods for those private fields of a
class that may be of interest to other classes. In our example, we could use

setDirection(getDirection() + 180);

Methods likeset Di r ect i on are called setters or modifiers.

Copyright © 2011 by Skylight Publishing

3.6 ~ INHERITANCE 67

Ilnheritance represents the 1S-A relationship between objects. A Bug IS-A (is an)

t

Act or. A UTur nBug IS-A Bug. In addition to the fields and methods, an object of a
subclass inherits a less tangible but also very valuable asset from its superclass: its
type. It islike inheriting the family name or title. The superclass's type becomes a
secondary, more generic type of an object of the subclass. Whenever a statement or a
method call expects an Act or -type object, you can plug in a Bug-type or a
UTur nBug-type object instead, because a Bug is an Act or, and a UTur nBug is an
Act or , too (by virtue of being a Bug).

For example, the class Act or Wor | d has a method add:

public void add(Actor a)
{

_—

Since Bug, Fl ower, Rock, and UTur nBug are all subclasses of Act or, you can pass
aBug, aFl ower, aRock, or aUTur nBug object to Act or Wor | d’sadd method:

wor | d. add(new UTur nBug());

In Java, a collection of objects can only hold objects of a specified type. For
example, the gri d field in Act or is defined as a Gri d<Act or > object — gri d
holds Act or s. We wouldn’t be able to place bugs, flowers, and rocks into the same
grid if Bug, Fl ower, and Rock were not subclasses of Act or .

For the same reason, the following statements will compile with no problems:

Actor daisy = new Fl ower();
Bug boxy = new BoxBug();
Act or pacer = new UTurnBug();

Since every class extends the class Obj ect by default, every object IS-A(n) Obj ect .

Copyright © 2011 by Skylight Publishing

68 CHAPTER 3 ~ OBJECTS AND CLASSES

Figure 3-7 shows a UML diagram of some of the GridWorld classes and their
relationships.

Grid<Actor>

< .
Actor K> Location

Vi \“

Rock Flower Bug
UTurnBug
has
A B
extends

Figure3-7. Actor hasaGi d<Actor >, Locati on, and Col or;
Rock, Fl ower, and Bug extend Act or ;
UTur nBug extends Bug

We have made our first steps in OOP. But a lot remains to be learned. We will
discuss more advanced concepts and continue with GridwWorld in Chapter 11.

3.7 Lab: Random Bugs

Read Part 2 of the GridWorld Student Manual. Set up and run the BoxBug project
with the BoxBug and BoxBugRunner classes (provided in the GridWorld's
proj ect s/ boxBug folder) and gri dwor | d. j ar . Review BoxBug’s source code.

In this lab you will create a new variation of Bug, a RandonBug. A RandonBug is
similar to a regular Bug: if it can move, it does. Then, regardiess of whether it has
moved or not, it changes direction randomly (by a multiple of 45 degrees).

Copyright © 2011 by Skylight Publishing

3.7 ~ LAB: RANDOM BuUGS 69

Follow these steps:

1. Copy UTurnBug. j ava into RandonBug. j ava and update the class's header
and constructor names in the code. RandonBug should extend Bug.

2. Replacethet ur nAr ound method with at ur n(angl e) method:

public void turn(int angle)

{
.

Use UTur nBug’s code (Figure 3-6) as a prototype for setting the direction of the
bug.

[RandonBug aready has at ur n method, inherited from Bug. That method takes

no parameters. It is acceptable and sometimes desirable to give the same name to
two or severd methods in a class, as long as these methods take different

t numbers and/or types of parameters. Thisis called method overloading.

3. Modify the act method to make the bug move if it can. Then the bug should
turn by a random angle, which is a multiple of 45 degrees (or — the same thing
— simply turn in arandom direction). The statement

int angle = 45 * (int)(Math.random() * 8);

sets angl e to a random multiple of 45, from 0 to 315. (We will explain how it
works later, in Chapter 6; for now just use it as written above.)

4, Copy BugRunner.java into RandonBugRunner.java, change the class's
name in the class's header, and edit the mai n method to add a couple of
RandonBug objects to worl d. Create a GridWorld project with
RandonBugRunner and RandonBug and test your program.

Also complete Exercises 1 and 2 on page 13 of the GridWorld Student Manual.

Copyright © 2011 by Skylight Publishing

70 CHAPTER 3 ~ OBJECTS AND CLASSES

3.8 Summary

An OOP program is best visualized as a virtual world of interacting objects. A
program’'s source code describes different types of objects used in the program.
Objects of the same type are said to belong to the same class. An object is called an
instance of its class. The source code of a Java program consists of definitions of
classes.

The source code for each class is stored in a separate file with the same name as the
class and the extension . j ava. A class name always starts with a capital letter. Itis
customary to place all your classes for a small project into the same folder. Several
compiled Java classes may be collectedinone. j ar file.

A CRC card gives a preliminary, informal description of a class, listing its name, the
key “responsibilities’ of its objects, and the other classes this class depends on
(“collaborators’).

Thei nport statements at the top of a class's source code tell the compiler where it
can find the library classes and packages used in that class.

A class's source code begins with an optional brief comment that describes the
purpose of the class, followed by i nport statements, if necessary, then the class's
header, and the class's body within braces. A class defines the data elements of an
object of that class, caled instance variables or fields. Each instance variable has a
name, given by a programmer, and atype. The set of fields serves as the “personal
memory” of an object. Their values may be different for different objects of the
class, and these values can change while the program is running. A class also defines
constructors, which are short procedures for creating objects of that class, and
methods, which describe what an object can do.

A constructor always has the same name as its class. A constructor is used primarily
to set the initial values of the object’s fields. It can accept one or severa parameters
that are used to initialize the fields. A constructor that does not take any parameters
is called a no-args constructor. A class may have several constructors that differ in
the number or types of parameters that they accept. If no constructors are defined,
the compiler automatically supplies one default no-args constructor that sets all the
instance variables to default values (zeroes for numbers, nul | for objects, f al se for
bool ean variables).

Copyright © 2011 by Skylight Publishing

3.8 ~ SUMMARY 71

You create a new object in the program using the new operator. The parameters
passed to new must match the number, types, and order of parameters of one of the
constructors in the object’s class, and new invokes that constructor. new allocates
memory to store the newly constructed object.

The functionality of a class — what its objects can do — is defined by its methods.
A method accomplishes a certain task. It can be called from constructors and other
methods of the same class and, if it is declared publ i c, from constructors and
methods of other classes. A method can take parameters as its “inputs.” Parameters
passed to a method must match the number, types, and order of parameters that the
method expects. A method can return a value of a specified type to the caller. A
method declared voi d does not return any value.

In OOP, dl the instance variables of a class are usually declared pri vat e, so only
objects of the same class have direct access to them. Some of the methods may be
private, too. Users of aclass do not need to know how the class is implemented and
what its private fields and methods are. This practiceis called information hiding. A
class interacts with other classes only through a well-defined set of constructors and
public methods. This concept is called encapsulation. Encapsulation facilitates
program maintenance, code reuse, and documentation. A class often provides public
methods that return the values of an object’s private fields, so that an object of a
different class can access those values. Such methods are called accessor methods or
accessors. Methods that set the values of private fields are called setters or
modifiers.

A class definition does not have to start from scratch: it can extend the definition of
another class, adding fields and/or methods or overriding (redefining) some of the
methods. This concept is called inheritance. It is said that a subclass (or derived
class) extends a superclass (or base class). Constructors are not inherited.

An object of a subclass aso inherits the type of its superclass as a secondary, more
generic type. This formalizes the ISA relationship between objects: an object of a
subclass IS-A(n) object of its superclass.

Copyright © 2011 by Skylight Publishing

72 CHAPTER 3 ~ OBJECTS AND CLASSES

Exercises
Sections 3.1-3.5
1 Mark true or false and explain:

(@ Thename of aclassin Java must be the same as the name of its source
file (excluding the extension . j ava).

(b) The names of classes are case-sensitive.

(c) Theinport statement tellsthe compiler which other classes use this

class. 4
2. Mark true or false and explain:
(@ TheBugRunner program consists of one class. v

(b) A Javaprogram can have as many classes as necessary.
(c) A Javaprogram isalowed to create only one object of each class.

(d) Every class hasamethod called mai n. 4

3. Navigate your browser to Oracle' s Java APl (Application Programming
Interface) documentation web site (for example,
htt p: // downl oad. or acl e. con j avase/ 6/ docs/ api /i ndex. ht m),
or, if you have the JDK documentation installed on your computer, open the
file<JDK base fol der >/ docs/ api/index. htnl (for example,
C./Program Fi | es/ Java/jdkl. 6. 0_21/docs/ api /i ndex. htni).

(@ Approximately how many different packages are listed in the API
spec?

(b) Find JFrane inthelist of classesin the left column and click onit.
Scroll down the main window to the “Method Summary” section.
Approximately how many methods does the JFr anme class have,
including methods inherited from other classes? 3? 12? 25?
300-400? v

Copyright © 2011 by Skylight Publishing

CHAPTER 3 ~ EXERCISES 73

A

10."

Mark true or false and explain:

(@ Fieldsof aclassare usually declared pri vat e.

(b) Anobject hasto be created before it can be used. v

() A class may have more than one constructor.

(d) The programmer gives names to objectsin his program.

(e) When an object is created, the program always callsitsi ni t method.
v

What are the benefits of encapsulation? Name three.

Make acopy of gri dwor | d. j ar and renameitintogri dworl d. zi p.
Examineits contents. Asyou cansee, a. j ar fileisnothing more than a
compressed folder. How many compiled Java classes doesit hold inits

i nfo/ gridworl d/ act or subfolder?

The constructor of GridWorld' s Locat i on classtakes two integer
parameters. Which of them isthe row and which is the column of the
location? Are rows and columns counted from O or from 1? Find out by
running BugRunner and positioning the cursor over the grid.

Modify GridWorld' s BugRunner classto placeinto the grid ared bug at
location (1, 2) and a green bug at the upper left corner of thegrid. Add a
gray rock at arandom location. < Hint: see BoxBugRunner . j ava for an
example of how to place an actor at a specified location. = v

Modify BugRunner to place into the grid three bugsin arow, next to each
other, al facing east. < Hint: turn each bug a couple of times before adding
ittothegrid. :

Write a simple console application that creates a Bug and “printsit out”:

Bug bob = new Bug();
System out . println(bob);

What is displayed? How does the program know how to “print” a bug?
Examine Bug. j ava and Act or . j ava to find an explanation. v

Copyright © 2011 by Skylight Publishing

74

CHAPTER 3 ~ OBJECTSAND CLASSES

11.¢

12.¢

Create aclass Book with two privatei nt fields, nunPages and

current Page. Supply aconstructor that takes one parameter and sets
nunPages to that value and cur r ent Page to 1. Provide accessor methods
for both fields. Also provide a method next Page that increments

current Page by 1, but only if cur r ent Page islessthan nunPages.

Hint:

/1N

i f (currentPage < nunPages)
current Page++;

~
-

Create aBookTest classwith amai n method. Let mai n create a Book
object with 3 pages, then call its next Page method three times, printing out
the value of cur r ent Page after each call.

TheclassCircle (Circle.javainJpm Ch0O3\ Exer ci ses) describesa
circlewith agivenradius. Theradius hasthetypedoubl e, whichisa
primitive data type used for representing real numbers. The

Circl eTest . java classin JM Ch03\ Exer ci ses isatiny console
application that prompts the user to enter a number for the radius, creates a
Gircl e object of that radius, and displaysitsareaby calingtheGi rcl e’'s
get Ar ea method.

Createaclass Cyl i nder withtwo privatefields: Gircl e base and

doubl e hei ght. Isitfairtosay thataCyl i nder HAS-A Circl e?
Provide a constructor that takes two doubl e parameters, r and h, initializes
base toanew G rcl e withradiusr, and initializes hei ght toh. Providea
method get Vol une that returns the volume of the cylinder (which is equal
to the base area multiplied by height). Create asimple test program

Cyl i nder Test , that prompts the user to enter the radius and height of a
cylinder, creates a new cylinder with these dimensions, and displaysits
volume.

Copyright © 2011 by Skylight Publishing

CHAPTER 3 ~ EXERCISES 75

13.¢

JM ChO3\ Exer ci ses\ Coi nTest ispart of aprogram that shows a picture

of acoinin the middle of awindow and “flips’ the coin every two seconds.
Y our task isto supply the second class for this program, Coi n.

The Coi n class should have one constructor that takes two parameters of the
type | mage: the heads and tails pictures of the coin. The constructor saves
these imagesin the coin’s private fields (of the type | mrage). Coi n should
aso have afield that indicates which side of the coinis displayed. The Coi n
class should have two methods:

/**

* Flips this coin
*/

public void flip()
{

.

and
/**
* Draws the appropriate side of the coin
* centered at (x, vy)
*/
public void drawm Graphics g, int x, int y)
{
}
¢ Hints:

1. inport java.awt .| mage;
i mport java.awt. G aphi cs;

2. TheclassG aphi c¢s hasamethod that draws an image at a given
location. Call it like this:
g.drawi mage(pic, xUL, yUL, null);
where pi ¢ istheimage and xUL and yUL are the coordinates of its upper
left corner. Y ou need to calculate xUL and yUL from the x and y passed

to Coi n’sdr aw. Explore the documentation for the library class| nmage
to find methods that return the width and height of an image.

3. Find copyright-free image files for the two sides of a coin on the Internet
or scan or take a picture of a coin and create your own image files.

N/

Copyright © 2011 by Skylight Publishing

76

CHAPTER 3 ~ OBJECTSAND CLASSES

Sections 3.6-3.8

14.

15.

16.

17"

Mark true or false:

(@ A subclassinherits all the fields and public methods of its

superclass. v
(b) A subclassinherits all those constructors of its superclass that are not
defined explicitly in the subclass. v

Question 12 above asks you to write aclass Cyl i nder with two fields:
Circle base anddoubl e hei ght. Instead of making base afield we
could simply derive Cyl i nder from i r cl e, adding only the hei ght field.
Discuss the merits of this design option. v/

Which of the following assignment statements will compile without errors?

(@ Actor alicel = new Actor();

(b) Actor alice2 = new Bug();

(c) Actor alice3 = new Flower();
(d) Bug bobl = new Actor();

(e Flower rosel = new Actor();
(f) Flower rose2 = new Fl ower (Col or. RED);
() BoxBug boxyl = new BoxBug();

(h) BoxBug boxy2 = new BoxBug(5);

(i) Bug boxy3 = new BoxBug(5);

Explain your answers and write a program to test them.

WriteaclassW | ti ngFl ower asasubclassof Fl ower . Provide one
constructor that takesW I t i ngFl ower ’slife span as a parameter and saves
itinaprivatefield. Another field, age, should beinitialized to 0. On each
step (each call to theact method) the age of the W | t i ngFl ower should
increase by 1. Once the age exceeds the life span, the flower should “di€”
(cal itsr emoveSel f Fronx i d method). ¢ Hint: do not start from scratch
— adapt W I ti ngFl ower from BoxBug.

NN

CHAPTER 3 ~ EXERCISES 77

Copyright © 2011 by Skylight Publishing

18" The BoxBug class has one constructor, which takes one integer parameter:

/**

* Constructs a box bug that traces a square of a given
* side length

* @aramlength the side length

*/

publ i ¢ BoxBug(int |ength)

{

steps = 0;

si deLength = | ength;
}

(The side of the square traced by the bug is measured between the centers of
the grid cells where the bug turns. When si deLengt h isset to 0, the bug
keeps turning in one cell and never moves.)

Add three more constructors to this class: (1) a no-args constructor, which
sets bug’s color to Col or . r ed and si deLengt h to O; (2) a constructor that
takes one parameter, bugCol or, and sets the bug’ s color to bugCol or and
si deLengt h to 0; and (3) a constructor that takes two parameters,

bugCol or and | engt h, and sets bug’s color to bugCol or and

si deLengt h tol engt h. Run the BoxBugRunner program and test the
added constructors interactively, using GridWorld’ s direct manipulation
interface feature.

19" Makerocks“roll.” DeriveaclassRol | i ngRock from Rock. Provide two
constructors similar to the Rock constructors, but make them set
Rol I'i ngRock’sdirection to southeast (135 degrees). Add ar ol | method,
identical to Bug’s nove method (only do not add a flower to the grid when
therock rolls). Providean act method: makeit smply alwayscall rol | .
Supply aclass RockRunner that placesafew Rol | i ngRock objectsinto the
grid and test your program.

Copyright © 2011 by Skylight Publishing

78

CHAPTER 3 ~ OBJECTSAND CLASSES

20.*

Derive aclass Car ef ul Bug fromBug. A Car ef ul Bug acts as follows.

Like aBoxBug, it counts the steps (callstoitsact method). On count zero,

it turns 45 degrees counterclockwise and increments the steps count by 1.

On count one, it returns back to its original direction and increments the steps
count by 1. On count two it turns 45 degrees clockwise and increments the
steps count by 1. On count three it returns to its original direction and
increments the steps count by 1. On count four it acts like aregular bug (if it
can move, it moves, otherwise it turns) and resets the steps count to zero.

Provide two constructors similar to Bug’s constructors. They should also set
the steps count to 0. Add amethod t ur nLef t that turns the bug 45 degrees
counterclockwise. Override Bug’'sact method, callingt ur nLeft, t urn,
canMve, and nove as necessary.

Add an orange Car ef ul Bug towor | d inthe BoxRunner program to test
your Car ef ul Bug class.

2 Hint:
if (steps == 0) [// If steps is equal to O

{
/1 do this

else if (steps == 1)

